

 wfnet

 v0.1.0

 Table of contents

 	Overview

 	Modules

 	wfnet

 	wfnet_app

 	wfnet_cli

 	wfnet_ehan

 	wfnet_emgr

 	wfnet_net

 	wfnet_runner

 	wfnet_srv

 	wfnet_sup

 	wfnet_tasks

Overview

Fred Youhanaie fyrlang@anydata.co.uk
Copyright 2023 Fred Youhanaie
Introduction
wfnet provides a configuration based workflow enactment engine
within an Erlang application.
About workflows
Here a workflow is an arrangement of tasks (activities) where each
task is only activated when, depending on the task type, one or all of
its predecessor(s) have terminated.
The concept, and implementation, of workflows here follows those
described on the Workflow patterns web
site, more specifically the basic control flow
patterns.
Effectively, the workflow is a directed graph of tasks of one of the
following types:
wftask: Within wfnet tasks are Erlang functions, either an {Mod, Fun, Args} triple, or a function expression.
	when enabled, the function is called, and the result obtained on
completion.

	when terminated, its successor task is enabled.

	A task can only have one predecessor and one successor.

The special tasks are internally defined pseudo-tasks as follows:
	wfenter: this is the first task of the workflow, it has no
predecessor. When enabled, it will intialise the workflow data and
enable its successor.

	wfexit: this is the last task of the workflow, it has no
successors. When enabled, it will clean up and return the data from
the workflow.

	wfands: this is an AND-split, aka parallel-split,
 it has a single predecessor, and one or more successors. When
 enabled, it will enable all its successors.

	wfandj: This is an AND-join, aka synchronization. It will only be
enabled when ALL of its predecessors have terminated. When enabled,
it will enable its successor.

	wfxors: This is an XOR-split, aka exclusive choice. When enabled,
it will enable only one of its successors. The successor is chosen
based on the termination result of its predecessor.

	wfxorj: This is an XOR-join, aka simple merge. It has one or more
predecessors, and one successor. It is enabled as soon as one of its
predecessors terminates.

wfnet

Client functions for the workflow server.

 Summary

 Types

 task/0

 task_data/0

 task_id/0

 task_succ/0

 task_type/0

 Functions

 info()

 get status info from the server

 load_file(Filename)

 load a workflow from file.

 load_wf(WF)

 load a workflow from a list of tasks.

 restart()

 restart the application

 run_wf()

 run the currently loaded workflow.

 start()

 start the application.

 stop()

 stop the application.

 task_done(Id, Result)

 Tell the server that a task has completed.

 Types

 Link to this type

 task/0

 View Source

 -type task() :: {task_type(), task_id(), task_succ(), task_data()}.

 Link to this type

 task_data/0

 View Source

 -type task_data() :: term().

 Link to this type

 task_id/0

 View Source

 -type task_id() :: integer().

 Link to this type

 task_succ/0

 View Source

 -type task_succ() :: task_id() | [task_id()] | [].

 Link to this type

 task_type/0

 View Source

 -type task_type() :: wfenter | wftask | wfands | wfandj | wfxors | wfxorj | wfexit.

 Functions

 Link to this function

 info()

 View Source

 -spec info() -> term().

get status info from the server

 Link to this function

 load_file(Filename)

 View Source

 -spec load_file(file:name_all()) -> ok | {error, term()}.

load a workflow from file.

 Link to this function

 load_wf(WF)

 View Source

 -spec load_wf([task()]) -> ok | {error, term()}.

load a workflow from a list of tasks.

 Link to this function

 restart()

 View Source

 -spec restart() -> ok | {error, term()}.

restart the application

 Link to this function

 run_wf()

 View Source

 -spec run_wf() -> ok | {error, term()}.

run the currently loaded workflow.

 Link to this function

 start()

 View Source

 -spec start() -> ok | {error, term()}.

start the application.

 Link to this function

 stop()

 View Source

 -spec stop() -> ok | {error, term()}.

stop the application.

 Link to this function

 task_done(Id, Result)

 View Source

 -spec task_done(integer(), term()) -> ok | {error, term()}.

Tell the server that a task has completed.

wfnet_app

The wfnet application module.

wfnet_cli

Command line utility for wfnet.

 Summary

 Types

 task_id/0

 Functions

 main(Args)

 Types

 Link to this type

 task_id/0

 View Source

 -type task_id() :: integer().

 Functions

 Link to this function

 main(Args)

 View Source

wfnet_ehan

The wfnet event handler. Handles the various events from the wfnet server.
By default, it will wait for the events and produce a log.
We can also wait/block until the end of workflow.
To enable the handler, use wfnet_ehan:add_handler/0

 Summary

 Functions

 add_handler()

 Adds an event handler

 start_link()

 Creates an event manager

 Functions

 Link to this function

 add_handler()

 View Source

 -spec add_handler() -> ok | {'EXIT', Reason :: term()} | term().

Adds an event handler

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, Pid :: pid()} | {error, Error :: {already_started, pid()} | term()}.

Creates an event manager

wfnet_emgr

Workflow event manager. This allows clients to receive progress event notifications from the wfnet server.
The currently recognized events are: wf_loaded, wf_running and wf_completed.

 Summary

 Functions

 add_handler()

 Adds an event handler

 start_link()

 Creates an event manager

 which_handlers()

 Adds an event handler

 Functions

 Link to this function

 add_handler()

 View Source

 -spec add_handler() -> ok | {'EXIT', Reason :: term()} | term().

Adds an event handler

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, Pid :: pid()} | {error, Error :: {already_started, pid()} | term()}.

Creates an event manager

 Link to this function

 which_handlers()

 View Source

 -spec which_handlers() -> ok | {'EXIT', Reason :: term()} | term().

Adds an event handler

wfnet_net

A set of functions for processing Workflow Net definitions.

 Summary

 Types

 task/0

 task_data/0

 task_id/0

 task_pred/0

 task_rec/0

 task_state/0

 task_succ/0

 task_type/0

 Functions

 check_digraph(G)

 Check/validate the graph of a workflow

 check_wf(WF)

 Check that a WF definition is valid.

 load_digraph(WF)

 load the workflow into a digraph.

 load_ets(WF)

 Load a workflow definition into an ETS table.

 read_file(File)

 read a workflow file and return it as a list of task tuples.

 Types

 Link to this type

 task/0

 View Source

 -type task() :: {task_type(), task_id(), task_succ(), task_data()}.

 Link to this type

 task_data/0

 View Source

 -type task_data() :: term().

 Link to this type

 task_id/0

 View Source

 -type task_id() :: integer().

 Link to this type

 task_pred/0

 View Source

 -type task_pred() :: task_id() | [task_id()] | [].

 Link to this type

 task_rec/0

 View Source

 -type task_rec() :: #task_rec{}.

 Link to this type

 task_state/0

 View Source

 -type task_state() :: inactive | done | waiting | running.

 Link to this type

 task_succ/0

 View Source

 -type task_succ() :: task_id() | [task_id()] | [].

 Link to this type

 task_type/0

 View Source

 -type task_type() :: wfenter | wftask | wfands | wfandj | wfxors | wfxorj | wfexit.

 Functions

 Link to this function

 check_digraph(G)

 View Source

 -spec check_digraph(digraph:graph()) -> ok | {error, term()}.

Check/validate the graph of a workflow
We check for the following:
	There should be no leftover placeholder vertices.
	There should be exactly one wfenter, and with no predecessors.
	There should be exactly one wfexit, and with no successors.
	All other tasks must be on a path between wfenter and wfexit.

 Link to this function

 check_wf(WF)

 View Source

 -spec check_wf([task()]) -> ok | {error, term()}.

Check that a WF definition is valid.
Check that the task tuples in a WF are valid.

 Link to this function

 load_digraph(WF)

 View Source

 -spec load_digraph(list()) -> {ok, digraph:graph()} | {error, term()}.

load the workflow into a digraph.
A new digraph containing the workflow is returned.
It is the responsibility of the caller to delete the digraph when no longer needed.

 Link to this function

 load_ets(WF)

 View Source

 -spec load_ets([task()]) -> {ok, ets:table()} | {error, term()}.

Load a workflow definition into an ETS table.
The workflow definition, WF, is converted to digraph, and the ETS records are generated from the digraph vertices.
Once the ETS table is populated, the digraph will be deleted.

 Link to this function

 read_file(File)

 View Source

 -spec read_file(file:name_all()) -> {ok, [term()]} | {error, term()}.

read a workflow file and return it as a list of task tuples.

wfnet_runner

Run the function in a task.

 Summary

 Functions

 run_task(Id, Data)

 process the payload of a task.

 Functions

 Link to this function

 run_task(Id, Data)

 View Source

 -spec run_task(integer(), term()) -> ok.

process the payload of a task.
If the payload in Data is a function, it will be run in the background, otherwise, a log message will be printed.

wfnet_srv

This is tha main workflow engine/controller.
Currently it can only handle one workflow at a time, within a single node.

 Summary

 Types

 task/0

 task_data/0

 task_id/0

 task_pred/0

 task_rec/0

 task_state/0

 task_succ/0

 task_type/0

 Functions

 load_file(Filename)

 tell the server to load a new workflow from a file

 load_wf(WF)

 tell the server to load a new workflow

 run_wf()

 start the current workflow

 start_link()

 Starts the server

 task_done(Id, Result)

 handle task done

 wf_info()

 return the current server status.

 Types

 Link to this type

 task/0

 View Source

 -type task() :: {task_type(), task_id(), task_succ(), task_data()}.

 Link to this type

 task_data/0

 View Source

 -type task_data() :: term().

 Link to this type

 task_id/0

 View Source

 -type task_id() :: integer().

 Link to this type

 task_pred/0

 View Source

 -type task_pred() :: task_id() | [task_id()] | [].

 Link to this type

 task_rec/0

 View Source

 -type task_rec() :: #task_rec{}.

 Link to this type

 task_state/0

 View Source

 -type task_state() :: inactive | done | waiting | running.

 Link to this type

 task_succ/0

 View Source

 -type task_succ() :: task_id() | [task_id()] | [].

 Link to this type

 task_type/0

 View Source

 -type task_type() :: wfenter | wftask | wfands | wfandj | wfxors | wfxorj | wfexit.

 Functions

 Link to this function

 load_file(Filename)

 View Source

 -spec load_file(file:name_all()) -> ok | {error, term()}.

tell the server to load a new workflow from a file

 Link to this function

 load_wf(WF)

 View Source

 -spec load_wf(file:name_all()) -> ok | {error, term()}.

tell the server to load a new workflow

 Link to this function

 run_wf()

 View Source

 -spec run_wf() -> ok | {error, term()}.

start the current workflow

 Link to this function

 start_link()

 View Source

 -spec start_link() ->
 {ok, Pid :: pid()} |
 {error, Error :: {already_started, pid()}} |
 {error, Error :: term()} |
 ignore.

Starts the server

 Link to this function

 task_done(Id, Result)

 View Source

 -spec task_done(integer(), term()) -> ok | {error, term()}.

handle task done

 Link to this function

 wf_info()

 View Source

 -spec wf_info() -> term().

return the current server status.

wfnet_sup

Supervisor for the wfnet workflow server.

 Summary

 Functions

 start_link()

 Starts the supervisor

 Functions

 Link to this function

 start_link()

 View Source

 -spec start_link() ->
 {ok, Pid :: pid()} |
 {error, {already_started, Pid :: pid()}} |
 {error, {shutdown, term()}} |
 {error, term()} |
 ignore.

Starts the supervisor

wfnet_tasks

Functions for handling the workflow task states and results.
All the data is kept in an ETS table, which is created with wfnet_net:load_ets/1.
Each record in the table is of type wfnet:task_rec(), see include/wfnet.hrl for details.
{ Id, Type, State, Pred, Succ, Data, Result }

 Summary

 Types

 task_id/0

 task_state/0

 Functions

 all_results(Tab_id)

 collect and return the results of all the tasks.

 all_states(Tab_id)

 collect and return the states of all the tasks.

 get_result(Tab_id, Id)

 Return the result field of a task

 get_state(Tab_id, Id)

 Return the state field of a task

 put_result(Tab_id, Id, Result)

 save a task's result

 put_state(Tab_id, Id, Task_state)

 save a task's state

 Types

 Link to this type

 task_id/0

 View Source

 -type task_id() :: integer().

 Link to this type

 task_state/0

 View Source

 -type task_state() :: inactive | done | waiting | running.

 Functions

 Link to this function

 all_results(Tab_id)

 View Source

 -spec all_results(ets:table()) -> {ok, map()} | {error, term()}.

collect and return the results of all the tasks.

 Link to this function

 all_states(Tab_id)

 View Source

 -spec all_states(ets:table()) -> {ok, map()} | {error, term()}.

collect and return the states of all the tasks.

 Link to this function

 get_result(Tab_id, Id)

 View Source

 -spec get_result(ets:table(), task_id()) -> {ok, term()} | {error, term()}.

Return the result field of a task
In case of non-existent table or task record error will be returned.
The result field will be returned, whether the task has run or not.

 Link to this function

 get_state(Tab_id, Id)

 View Source

 -spec get_state(ets:table(), task_id()) -> {ok, task_state()} | {error, term()}.

Return the state field of a task
In case of non-existent table or task record error will be returned.

 Link to this function

 put_result(Tab_id, Id, Result)

 View Source

 -spec put_result(ets:table(), task_id(), term()) -> ok | {error, term()}.

save a task's result

 Link to this function

 put_state(Tab_id, Id, Task_state)

 View Source

 -spec put_state(ets:table(), task_id(), task_state()) -> ok | {error, term()}.

save a task's state

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

